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ABSTRACT 

Defense planners must strive to develop and incorporate new, efficient procedures 

to allocate scarce resources in varied complex environments.  We consider two discrete-

time, discrete-space search effort allocation situations.  Both involve the employment of 

an imperfect sensor, which is subject to both false-positive and false-negative errors.  The 

area of interest, comprised of several disjoint area-cells, contains a single target of 

interest.  In the first situation, the target moves according to a Markovian transition 

matrix, which is unknown to the sensor operator.  The objective is to estimate the target’s 

steady-state distribution, using only the sensor’s detection signals and knowledge of its 

false-positive and false-negative rates.  The second situation considers a stationary target, 

wherein the objective is to determine the area-cell occupied by the target, in the fewest 

expected number of investigations, to within certain operator-prescribed error tolerances.  

We develop an adaptive algorithm based on stochastic approximation for the first 

situation, and show that the resultant rate of error in determining target presence/absence 

in any area-cell converges to zero at the fastest possible rate.  We propose a sequential 

elimination procedure for the second situation, which provides an efficient determination 

of target location and guarantees its error rate not to exceed the operator-prescribed 

tolerance. 
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EXECUTIVE SUMMARY 

Today’s operational planners and sensor operators are challenged with scarce 

resources in terms of both time and sensor assets.  One may argue that recent 

advancements in technology have slowed the growth of innovative employment of 

tactics, techniques, and procedures (TTPs), making sensor operators increasingly more 

dependent upon that technology.  Defense planners must strive to develop and 

incorporate new, efficient procedures to allocate scarce resources in many different 

complex environments.  Any efficiency that can be gained, however small, may have a 

compound effect over time on overall combat readiness, by freeing up precious assets to 

perform other time-sensitive, critical sensing actions.   

In this thesis, we consider two particular search effort allocation situations of 

operational interest.  We begin by describing some characteristics common to both 

situations, then follow with a discussion of both situations’ unique properties and a 

discussion of our proposed models.  Both situations allow us to contend with the fact that 

search sensors are imperfect; i.e., they are subject to declaring a target present when it is 

in fact absent (false-positive error), as well as to declaring a target absent when it is in 

fact present (false-negative error).  The Area of Operational Interest (AOI) for both 

situations is comprised of a grid of discrete, non-overlapping area-cells, each cell having 

its own associated values for sensor error rates.  These area-cells might be defined by 

geo-political borders, terrain features, or some arbitrary grid system of tactical 

significance to the operator, and need not be uniform in size nor shape.  Both situations 

involve a single target of interest (TOI), located somewhere within the AOI.  The TOI is 

unintelligent, in the sense that it does not react to any sensing action.  We treat time in 

both of these situations in terms of discrete time-steps.  The operator makes one 

investigation into one area-cell per time-step.  Both situations deal with the allocation of 

search sensors, which implies that we are concerned with the placement of sensors, and 

that those sensors are not restricted to follow any particular path.  In contrast, a search 

path problem might impose such a restriction; say, for example, only immediately 

adjacent area-cells may be investigated on subsequent time-steps.  It may be assumed 
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either that sufficient time exists between investigations so that a single sensor may be re-

positioned to any other area-cell, or that each area-cell contains one pre-positioned 

sensor, but the operator may process only one of those sensors in any time-step. 

The first situation deals with a randomly moving target, whose underlying pattern 

of motion results in some steady-state distribution over time.  This suggests that this 

particular circumstance is concerned with long-term Intelligence, Surveillance and 

Reconnaissance (ISR) operations, where the number of available search opportunities for 

the operator is rather substantial.  For a simplified illustration of this steady-state concept 

in a two-cell AOI, this may mean that, in the long-run average, the TOI is present in area-

cell “x” 25% of the time, and in area-cell “y” 75% of the time.  Of course, the underlying 

true steady-state distribution of the TOI’s location is ultimately unknown to the sensor 

operator, who must use only the (imperfect) detection signals provided by the sensors, 

along with knowledge of their associated error rates, to determine an estimate of this 

steady-state distribution. 

The model developed in this thesis to deal with this first situation is an adaptive 

model, meaning that it provides a dynamic allocation plan based on new information as it 

becomes available.  We show that our particular procedure converges to the true steady-

state distribution for a large number of search opportunities, and that the error rate for 

determining target presence/absence in any cell converges to zero more quickly than with 

other allocation schemes.  The result implies a cost-savings to the sensor operator and the 

operational planner, allowing precious assets to be freed up to perform other, time-critical 

sensing evolutions. 

In the second search allocation situation of this thesis, we are concerned with a 

stationary target hidden somewhere in the AOI.  Likely candidates fitting this template 

might include an insurgent in hiding, an Improvised Explosive Device (IED), or a 

downed friendly aircraft for search and rescue.  The objective in this circumstance is to 

determine, in the smallest expected number of investigations, the area-cell in which the 

target is located.  Of course, since the sensors are imperfect, there is no guarantee that the 

answer is correct, so in this case the answer must be framed with some sort of confidence.  

To accomplish this, the operator prescribes an error tolerance.  For example, an error 
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tolerance of 5% would mean that the operator is willing to accept that the model provides 

a correct determination of target presence at least 95% of the time.  Naturally, the larger 

the error tolerance the operator is willing to accept, the more quickly the operator can 

expect to make a determination.  Conversely, a small tolerance for error could mean 

many more search attempts expended to make a determination. 

To handle this second situation, we develop a family of sequential elimination 

procedures.  These procedures work in stages; during each stage, all possible area-cells in 

contention of hiding the target are examined and ranked.  If any area-cell, when 

compared to the area-cell of maximum likelihood, fails to meet a certain threshold, that 

area-cell is eliminated permanently from contention.  The process continues until only 

one area-cell remains in the pool of candidates, and that cell is declared to contain the 

target.  We show that our sequential models provide efficient solutions to this class of 

problem, while guaranteeing to meet the user-prescribed error tolerances.  In particular, 

we show our procedure not only outperforms a typical sensible approach that uses the 

same expected number of investigations; indeed the sensible approach fails to meet the 

error tolerance.  As with our adaptive model for the first situation, the cost-savings to the 

sensor operator and operational planner when implementing this sequential eliminating 

procedure is evident; scarce resources may be more readily available to perform other 

critical sensing tasks. 
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I. INTRODUCTION  

Today’s operational planners and sensor operators are challenged with scarce 

resources in terms of both time and sensor assets.  One may argue that recent 

advancements in technology have slowed the growth of innovative employment tactics, 

techniques, and procedures (TTPs), making sensor operators increasingly more 

dependent upon that technology.  Defense planners must strive to develop and 

incorporate new, efficient procedures to allocate scarce resources in many different 

complex environments.  Any efficiency that can be gained, however small, may have a 

compound effect over time on overall combat readiness, by freeing up precious assets to 

perform other time-sensitive, critical sensing actions. 

In this thesis, we consider two particular search effort allocation situations of 

operational interest.  We refer to these as the Single Markov Target (SMT) model, and the 

Single Static Target (SST) model.  We begin by describing some characteristics common 

to both models, then follow with discussions of the background and problem statements, 

objectives, and scope and limitations for the SMT and SST models, treated in Section B 

and Section C, respectively. 

A. MODEL COMMONALITIES 

Both the SMT and SST models allow us to contend with the fact that search 

sensors are imperfect; i.e., they are subject to declaring a target present when it is in fact 

absent (false-positive error), as well as to declaring a target absent when it is in fact 

present (false-negative error).  The Area of Operational Interest (AOI) for both models is 

comprised of a grid of discrete, non-overlapping area-cells, each cell having its own 

associated values for sensor error rates.  These area-cells might be defined by geo-

political borders, terrain features, or some arbitrary grid system of tactical significance to 

the operator, and need not be uniform in size nor shape.  Both models involve a single 

target of interest (TOI), located somewhere within the AOI.  The TOI is non-reactive; 

i.e., it does change its pattern of behavior in response to any sensing action.  We treat 

time in both of these models in terms of discrete time-steps.  The operator makes one 
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investigation into one area-cell per time-step.  Both models deal with the allocation of 

search sensors, which implies that we are concerned with the placement of sensors, and 

that those sensors are not restricted to follow any particular path.  In contrast, a search 

path problem might impose such a restriction, say, e.g., only immediately adjacent area-

cells may be investigated on subsequent time-steps.  It may be assumed either that 

sufficient time exists between investigations so that a single sensor may be re-positioned 

to any other area-cell, or that each area-cell contains one pre-positioned sensor, but the 

operator may process only one of those sensors in any time-step. 

In summary, both SMT and SST are discrete-time, discrete space, single non-

reactive target, single searcher, path unconstrained, imperfect search sensor allocation 

models. 

B. SINGLE MARKOV TARGET (SMT) MODEL 

1.  Problem Statement 

Consider an AOI, in which a TOI is known to be operating.  The TOI could be a 

convoy, a vehicle, or an individual insurgent.  Assume that, based on intelligence data 

and social theory, this particular TOI is subject to movement in a Markovian fashion.  

That is to say, at each time step, the TOI moves randomly according to some probability 

mass function (pmf), which may depend on a finite number of current and past locations.  

An area-cell is considered to be determined when enough evidence exists for the sensor 

operator to declare that a target is either present or absent in that cell.  The resultant 

operational problem is summarized: how to estimate the steady-state distribution of the 

TOI (whose transition matrix and resultant steady-state distribution clearly are unknown 

to the searcher) adequately, based solely on noisy observations from imperfect sensors. 

2. Objective 

The Strong Law of Large Numbers suggests that any search effort scheme that 

allocates a positive allocation of effort to every possible area-cell leads to estimates that 

converge upon the true steady state distribution of the target (see Chapter III for a more 
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thorough discussion of this).  Here, the objective is to determine an allocation scheme 

that converges quickly, while displaying an improved error decay rate (where the error is 

an incorrectly determined area-cell) when compared to other schemes for cases in which 

the available number of search opportunities—the search budget—is large. 

3.  Scope and Limitations 

For the scenario used in this portion of the thesis, we consider only one single 

target, whose movement is characterized as Markovian.  A target that moves according to 

some other scheme would not be appropriate for this model.  We do not consider an 

intelligent or reactive target.  Additionally, we consider only a single sensor (or multiple 

sensors subject to the constraint that only one sensor may be used at a particular time-

step); therefore, we do not consider cooperation among sensors.  It is assumed that sensor 

sensitivity and specificity (see Chapter II for the associated definitions) for each area are 

known values.  In reality, it is likely that these values would be noisy; the manufacturer 

might provide to the operator their expected values as published specifications, or 

perhaps the operator might derive them using some form of tactical decision aid.  Our 

model does not take into account that the sensitivity and specificity values might be 

correlated with the number of looks; e.g., sensors with recognition algorithms are likely 

to exhibit some form of learning behavior, with error rates decreasing with the number of 

observations.  Further, we assume that the operator’s search budget is large; otherwise, a 

dynamic programming approach might be suitable to this particular problem.  It will be 

shown that for relatively small search budgets, the adaptive algorithm we propose is not 

the best choice. 

C. SINGLE STATIC TARGET (SST) MODEL 

1.  Problem Statement 

Again, consider an AOI and a particular TOI for which the operator is searching.  

This time, however, we are concerned with a TOI that is stationary, or static, somewhere 

within the AOI.  Operational TOIs for this scenario might include, for example, enemy 
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insurgents in hiding or a downed friendly aircraft.  A sequential eliminating procedure is 

well suited for this particular application.  In practice, any situation where the TOI 

remains static in a timescale that is larger than that of the search process fits the 

framework of this model.  A sequential eliminating procedure attempts to isolate, from 

among several candidate systems, one particular desired system—the “objective.”  During 

a particular stage of a sequential eliminating procedure, all candidate systems are 

examined and ranked in order of their likelihood of being the objective.  Each system is 

then compared to the most likely objective—the system ranked highest for that stage—by 

means of the ratio of their likelihood ratios (i.e., their odds ratio).  Any system whose 

odds ratio fails to meet a certain threshold (which we define in Chapter III) is 

permanently removed (eliminated) from the set of candidates.  If all systems meet the 

threshold during a particular stage, then all those systems remain in the set of candidates 

(this is referred to as the continuation region).  The procedure advances to the next stage, 

using the updated candidate set.  The process continues until only one system remains in 

the set of candidates, and that system is declared the winner (in our case, the systems are 

the area-cells, and the winner is the area-cell containing the TOI).  The operational 

dilemma for this scenario is to make, as quickly as possible, a proper determination of 

TOI location, again based solely on the noisy sensor observations.   

2. Objective 

For the SST model, we set forth to develop efficient criteria for the sequential 

eliminating procedure, which, when followed, result in determination of TOI location 

meeting certain operator-defined error tolerances.   

3.  Scope and Limitations 

We once again restrict our study to the case of a single target and a single sensor.1  

For the SST model, however, the TOI is assumed to be stationary, at least for the duration 

of the search period.  The same assumptions made in the SMT model regarding sensor 

                                                 
1 As an exception, we treat a brief introductory case (case 1) in which each area-cell either contains or 

does not contain a TOI, independent of all other area-cells. 
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sensitivity and specificity are relevant to the SST model, namely that the values are 

treated as fixed for each area, and that there is no correlation among sensor observations.  

Other assumptions made without loss of generality will be noted in Chapter III. 
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II. LITERATURE REVIEW 

This chapter discusses previous literature and research relevant to this thesis, and 

consists of four sections.  We begin with an overview of some types of sensors currently 

in use or in development for unmanned aerial systems (UAS), as well as a brief survey of 

some research and literature related to search theory.  An introduction to some ideas in 

the field of stochastic search and optimization follows, with special attention paid to the 

concept of stochastic approximation.  We continue with a discussion on sequential 

analysis as a primer for the second model of this thesis.  Finally, we present some 

conclusions and a justification for the research of this thesis. 

A. BACKGROUND  

1.  Sensors and Complex Environments 

The nature of recent conflicts has imparted a two-fold effect on the employment 

of UASs.  First, it has caused the primary areas of operation to migrate into areas in 

which it is difficult to operate.  Second, it has placed increased importance on the 

technological development of airborne Intelligence, Surveillance, and Reconnaissance 

(ISR) sensors to counter both asymmetric and conventional threats.  Primary missions 

areas for tactical UASs in Iraq and Afghanistan include point surveillance, target 

following, area search, route reconnaissance, and Improvised Explosive Device (IED) 

detection (Owen, Martin, & Carriger, 2005). Missions flown by Pioneer, Scan Eagle, and 

Shadow UASs normally service a list of targets provided by intelligence units.  These 

target lists are typically comprised of, for example, suspected insurgent safe houses, 

suspected weapons caches and mortar points of origin as well as direct support for raids, 

patrols, convoys and other operations (Reber, 2007).  Additionally, recent research efforts 

have explored the use of UASs in the detection of possible chemical or biological plumes 

(Scheidt, 2008).  Modern conventional and emergent asymmetric threats have indeed 

shaped a challenging battle-space to frame these missions.  
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Geographic areas that operators consider inhospitable or undesirable for the 

employment of UASs include terrain prevalent in current regions of major conflict.  A 

geometrically diverse urban canopy and a cluttered, mountainous border crossing are two 

examples of areas that many consider exceptionally challenging for the operation of 

UASs.  We refer to these locations collectively as complex environments.  The challenges 

faced by operators and customers of UASs associated with these complex environments 

include, for example, variable levels of autonomy, collision avoidance, wind gusts and 

turbulence, unreliable wireless communications, stealth, power and energy management, 

and portability (Dodd &  Apopei, 2007).  

An elementary characterization of UAS-borne sensors in operation and under 

development today is via their sensitivity and specificity, two terms adopted from the 

binary classification test as measures of performance for discriminatory sensors (Kress, 

Szechtman, and Jones, 2008).  The sensitivity of a sensor is a measure of its ability to 

correctly detect a real target, whereas a sensor’s specificity is its ability to correctly reject 

(i.e., not detect) everything that is not a target of interest.  Both of these characteristics 

are measured as probabilities, and lead to complementary sensor error rates.  False 

negative (miss) rates are expressed algebraically as 1–sensitivity, and false positive (false 

alarm) rates are expressed as 1–specificity.  Examples of sensors that may be 

characterized by both sensitivity and specificity include chemical and biological plume 

detectors, Inverse Synthetic Aperture Radar (ISAR), Synthetic Aperture Radar (SAR), 

multispectral and hyperspectral imaging sensors, and other Coherent Change Detection 

(CCD) and recognition-based sensors (Suter, 2005). 

Determining a sensor’s sensitivity and specificity for any region is not a trivial 

matter.  Environmental factors such as wind, temperature, humidity, ambient light, and 

atmospherics, as well as physical makeup of the target compared to its surroundings, 

target and searcher motion, and line-of-sight considerations are all capable of affecting 

sensor performance (Calhoun, et al., 2007).  For certain Human-in-the-Loop (HITL) 

systems, the added complicating factor of operator recognition differential (RD) is often 

subjective and very difficult to quantify.  Additionally, certain sensors are susceptible to 

performance degradation over time, possibly decreasing both sensitivity and specificity. 
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2.  Search Theory and Mission Planning 

Since operators can afford neither infinite dwell time nor infinite sensors, a model 

must be developed that allocates assets, constrained by a particular search budget, in a 

manner that optimizes certain measures of performance and measures of effectiveness 

(MOP/MOE).  Much of the research done to date on sensor allocation has its roots in the 

ideas put forth by Koopman in his pioneering report, Search and Screening, penned in 

1946 and declassified in 1958.   

Benkoski, Monticino, and Weisinger (1991) give a survey of literature published 

on search theory up until 1991.  Their discussion covers problems with non-cooperative 

targets, as opposed to cooperative or rendezvous problems.  The class of non-cooperative 

target problems includes both those having to do with passive targets (one-sided search) 

and those concerned with evasive targets (search games).  They break down search 

problems by time and space (discrete versus continuous), target motion (stationary versus 

moving), and constraints on searcher motion (paths versus search effort allocation).  The 

authors also discuss additional extensions, including multiple searchers and targets, 

uncertain detection probabilities, and varying objective functions.  

One of the most widely cited treatments, and one whose motivation relates most 

closely to the focus of this thesis, is that proposed by Washburn (1983).  His study 

concerned the application of an iterative Forward and Backward (FAB) algorithm, 

originally put forth by Brown (1977), to compute optimal (in the sense of maximizing 

probability of target detection) search plans when the motion of the target is modeled by 

a discrete space and time Markov chain with known transition matrix.  The FAB 

algorithm is also the tool of choice for Dambreville and Le Cadre (1999) to allocate 

search effort in the case where search assets renew with generalized linear constraints.  

Oshumi (1991) tackles a similar problem to that of Washburn, but in continuous time 

where target motion is described by stochastic differential equations, rather than by a 

Markov process. 

Prior to Washburn’s work, moving target problems could only be solved in 

certain cases.  One particular case is that in which target motion is conditionally 



 10

deterministic with a factorable Jacobian.  In this case, one can reduce the to a stationary-

target problem and solve it via stationary-target techniques (Stone, 1977; Pursiheimo, 

1976; and Iida, 1972).  The other case is one in which the number of area-cells is small, 

despite a priori knowledge of the associated optimality conditions (Lions, 1971; 

Hellman, 1972; Saretsalo, 1973; Pollock, 1970; & Dobbie, 1974).   

Taking the idea of a non-cooperative target a step further, some authors have 

considered targets that take evasive action.  Such problems rarely lend themselves to 

analytic solutions; in such cases, simulation may provide a suitable alternative 

(Washburn, 1989).  Another approach utilizes the minimax strategy of game theory to 

maximize the searcher’s probability of detecting an evasive target (Dambreville and Le 

Cadre, 2001).  One possible drawback to the minimax strategy is the potentially 

prohibitive computational cost involved upon introduction of varied strategies for 

multiple searchers or targets.  Carl (2003) chose the former approach in his thesis 

studying the search for German U-Boats in the Bay of Biscay during World War II, using 

agent-based simulation to evaluate Allied search plans.   

DelBalzo and Hemsteter (2002) present a genetic algorithm approach to the 

evasive target problem.  They show that, in general, an evasively maneuvering target as 

compared to a randomly patrolling target reduces the cumulative detection probability 

(CDP) in sonar search dramatically, since counter-detection ranges are typically greater 

than detection ranges.  Their analysis covers several combinations of platforms and 

sensors in a simulated environment.  Their Genetic Range-dependent Algorithm for 

Search Planning (GRASP) and associated joint tactics exploit evasive target maneuvers 

and provide increased CDP over non-joint tactics.   

Whereas the typical objective of a detection search is to maximize probability of 

detection, the objective of a surveillance search is to maximize the probability of 

detecting the target at a specific time or in a specific region.  Similarly, the object in 

whereabouts search is to localize a target to within one of a finite number of cells 

(Benkoski, Monticino, & Weisinger, 1991).  In this case, searcher success is achieved by 

either detecting the target, or, if the target is not detected, by correctly guessing the cell 

containing the target.  Tognetti (1968) and Kadane (1971) treat the scenario of 
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whereabouts search against a stationary target.  By showing that solving a whereabouts 

search is equivalent to solving a finite number of optimal detection search problems, 

Stone and Kadane (1981) make general the earlier results to encompass the moving target 

problem.  Finally, Tierney and Kadane (1983) provide necessary optimality conditions 

and an algorithm that constructs search plans for the surveillance search problem against 

a Markovian target with known transition matrix. 

Dell, Eagle, Santos, and Martins (1996) formulate a discrete time, path 

optimization problem for multiple searchers.  They utilize a branch-and-bound algorithm 

and six heuristics for solving such problems.  In a related approach, Sato and Royset 

(2008) develop a specialized branch-and-bound algorithm and a Lagrangian relaxation-

based bounding technique to solve problems where the searcher is constrained by 

consumption limits of several resources.  In their problem, the searcher knows both the 

initial target distribution and its Markovian transition matrix. 

The problem addressed by Zhang and Chen (2006) deals with multiple imperfect 

sensor allocation against multiple targets in discrete time, where the overall goal is to 

minimize target location error.  In their model, estimated target position is represented 

through a probability grid updated dynamically by belief states based on sensor input.  

Sensor errors are inherent in the Gaussian signal strength inputs of the sensors; however, 

they do not deal directly with sensitivity and specificity in calculating allocations that are 

optimal in the sense of minimizing incorrect determinations. 

In his thesis, Lohr (1992) discusses Area Motion Search, a hybrid of classical 

search and detection theory models of Exhaustive Search and Random Search.  In this 

model, target motion is random in continuous time, searcher motion is systematic in 

continuous time, and detection opportunities in non-overlapping time periods are 

probabilistically independent.  Again, sensor error rates are not considered.   

Peot et al. (2005) suggest a probabilistic roadmap approach to the urban UAS 

routing problem which maximizes the utility of sensing actions for a given collection 

strategy, where the benefit is modeled as the cumulative probability of detection, 

recognition, or identification during the period that the target is observed.  A penalty cost 
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due to exposure to threats or navigational hazards in the environment offsets the benefit.  

While the robust tool is one that maximizes sensing actions with respect to sensor dwell, 

communications, Line of Sight (LOS), and UAS flight kinematic constraints, the authors 

do not address sensitivity and specificity of the sensors. 

Yan and Blankenship (1987) propose a list of tasks for a detection search, and 

emphasize the non-trivial nature of each step.  The steps they outline are highly 

applicable to our study: 

1. Compute a prior distribution of target location. 

2. Obtain a good estimate of sensor capabilities. 

3. Determine a detection (misdetection) function. 

4. Develop a search plan and estimate its success probability. 

5. Update the posterior target distribution from search feedback. 

6. Evaluate search effectiveness (Yan and Blankenship, 1987). 

Step 5 is often referred to as the Search Control Problem, and, for Yan and 

Blankenship, involves determining a search path that minimizes the target survivability 

up to a certain time.  They solve the problem on a simplified search model, in discrete 

time and space, by embedding the Dual Estimation Problem (Yan & Blankenship, June 

1987) into their Ordered Search Algorithm, a best-first search algorithm.  The resultant 

Optimal Detection Search Algorithm (ODSA) describes the real model more precisely.  

ODSA not only updates target distribution at the beginning of each time step to hone the 

accuracy of the Search Estimation Problem (see Step 4 above); it also finds an optimal 

path of the Search Control Problem.  By applying an efficient heuristic to the Ordered 

Search Algorithm, Yan and Blankenship show convergence to optimal paths, while 

expanding only about one ninth of the nodes expanded by an exhaustive search, thus 

fulfilling the evaluation of search effectiveness (see Step 6 above). 

As noted in Step 1, the ability to construct a prior distribution of target position is 

of interest.  One possible source for determining the initial target probability mass 

function is a tool known as Threat Mapper.  Riese (2006) developed the software tool, 

which leverages the robustness and availability of geospatial information systems (GIS) 

and fuses historical data to aid analysts and forces in making spatial forecasts to support 
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intelligence operations.  The planner enters locations of past events of interest (see Figure 

1, wherein historical events are represented by red triangles), and areas of spatial 

similarity are determined and used as a forecast for future events.  The output is a color-

coded map of absolute spatial similarity, as determined by user input characteristics (see 

Figure 2, where red areas are of high likelihood, and blue areas are of low likelihood), 

and can be normalized to create what can be used as a probability map. 

 

 

Figure 1.   Example Threat Mapper input (From Riese, 2008). 
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Figure 2.   Example Threat Mapper output (From Riese, 2008). 

 

B.  STOCHASTIC SEARCH AND OPTIMIZATION 

Whereas much of the previous research associated with the UAS routing problem 

has focused on classical search theory as explained in Section C of this chapter, the noise 

and uncertainty associated with the complex environments described above necessitate a 

robust tool.  Given the complexity of many real-world problems faced by industry and 

government today, along with the inherent uncertainty in the information that might be 

available to the problem solver, stochastic search and optimization models have been 
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playing a growing role (Spall, 2003).2  In stochastic optimization, there are generally two 

possible sources of uncertainty.  In the first case, random noise is present in the 

measurement of either a loss function, which is a scalar measurement summarizing the 

performance of the system for a given value of the vector of the “adjustables,” or its 

gradient function.  In the second case, there is a random choice made in the search 

direction as the algorithm iterates toward a solution.  For a given problem, there is also 

the possibility that noise is present due to both of the aforementioned cases.  In the 

problem presented in this thesis, the sources of noise are the misclassification errors 

inherent to the sensors, and the uncertainty associated with the movement of a target. 

One of the cornerstones of stochastic search and optimization is the idea of 

stochastic approximation (SA) (see Kushner & Yin, 2003).  SA algorithms are iterative 

methods of finding extremes or roots of functions whose values cannot be calculated 

directly, but instead must be approximated based on noisy observed values.  For example, 

let us start by considering a real function g, and suppose the goal is to find the value *  

such that  * 0g   .  Assume, for simplicity, that   0g    for *   and that   0g    

for *  .  The recursive procedure is 

 1 ( )n n ng        

for 0  .  If *
n   then   0ng   , meaning that 1n n   , and hence 1n   moves in 

towards * .  If *
n   then ( ) 0ng   , so that 1n n   , and 1n   moves to the left, 

approaching * . 

Robbins and Monro (1951) extended the above procedure to the case where the 

function g is unknown, but can be estimated via noisy observations.  The recursion is 

 1n n n nY       

where 0n  , 0n  , nn
   , and nY  are noisy observations of  ng  .  More 

precisely,   ,n nY g     with    | , , ,n i i n nE Y Y i n g    , and where the error term   

                                                 
2 Here, the term “search” is referring to the algorithmic approach to finding an optimal solution, as 

opposed to attempting to locate a target, which has been the definition referred to thus far. 
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has finite variance.  (The conditioning elements, , , ,i i nY i n  , comprise the history up to 

stage n.)  In this case, the recursion can be written as 

  1 ,n n n n ng            

suggesting that the effect of the error term   vanishes as n   due to the finite error 

variance and the conditions imposed on n . 

Soon after Robbins and Monro (1951) introduced their algorithm, Kiefer and 

Wolfowitz (1952) built upon it by injecting a second sequence of positive step sizes, 

which are used to estimate the derivative of the function of true values via the difference 

between the observed values and the new step sizes.  They showed that if both sequences 

of step sizes fulfill certain bounds, and the functions of the noisy and true values satisfy 

certain conditions, then the observed values converge in probability to the true value.  It 

is a concept similar to that of the Robbins-Monro and Kiefer-Wolfowitz algorithms that 

is at the heart of the stochastic approximation algorithm used in the SMT model of this 

thesis. 

C.  SEQUENTIAL ANALYSIS 

In the second situation of this thesis, the operator is concerned with quickly 

determining the presence or absence of a target subject to certain type-I and type-II error 

tolerances, which are specified by the operator. The goal is to stop the search in the least 

expected amount of time, subject to the error bounds. This problem is intrinsically 

sequential, as it deals with the fixed precision estimation of a parameter in the presence of 

an unknown nuisance parameter.  The theory behind sequential analysis is therefore a 

well-suited solution approach in this case.   

Siegmund (1985) is the classic reference in this field, and deals primarily with 

sequential hypothesis testing and related problems of estimation.  In many of these cases, 

a fixed sample solution exists and one employs sequential methods in order to achieve 

some greater efficiency in the solution.  For example, consider the case where one wishes 

to infer, on the basis of a random sample, whether the proportion of defective items in a 

large batch exceeds some value 0p .  Assume that the inference will be based on the 
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number mS  of defectives in a random sample of size m.  If m is a small proportion of the 

batch size, then mS  has (approximately) a binomial distribution with mean mp, where p is 

the true proportion of defectives in the batch, and a reasonable rule to test the hypothesis 

 0 0 1 0:  against :p p p p    

is to 

 0reject  if mS r  

for some constant r.  If the sample is drawn sequentially, and for some value k less than 

m, the value of kS  already equals r, one could stop sampling immediately and reject 0 .  

More formally, let T denote the smallest value of k for which kS r  and put 

 min ,T' T m .  Consider the procedure that stops sampling at the random time T'  and 

decides that 0  if and only if .p p T m    If one considers these procedures as tests of 

0 1 against ,   their rejection regions, namely     and mT m S r  , are the same 

events, and hence the two tests have the same power function.  Since the test which stops 

at random time T'  never takes more observations and may take fewer observations than 

the fixed sample test, it has a reasonable claim to be regarded as more efficient 

(Siegmund, 1985, p. 2).  Siegmund acknowledges additionally that sequential methods 

are a natural choice for parameter estimation problems, such as the SST model of this 

thesis. 

Malone (2004) treats ranking and selection procedures for both Bernoulli and 

multinomial systems.  These Bernoulli ranking and selection procedures are related to our 

problem, since the sensors sample from a Bernoulli distribution for each system (area-

cell), with parameter that depends on whether the target is present or absent in that area-

cell.  In her thesis, however, each system has unknown Bernoulli parameter 1,..., ma a , and 

the goal is to select the system with the largest a .  She applies fully sequential 

procedures to Bernoulli data for terminating solutions, and significant savings in total 

observations are realized for two to five systems, when one desires to detect small 

differences between competing systems.   
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Wieland and Nelson (2004) present a sequential, eliminating procedure for 

selecting the best system in a single-factor Bernoulli-response experiment with an odds-

ratio indifference zone.  Similar to Malone, in their case, “best” refers to the system with 

largest probability of success on a given trial.  Recall, in subtle contrast, the problem 

considered in this thesis.  Consider an AOI comprised of m area-cells, 

labeled 1,..., .mAC AC   Assume, without loss of generality, that a target is present within 

1AC .  Let ia  be the sensor’s sensitivity for cell ,i  and let 1 ib  be the specificity of the 

sensor for cell i  (see Chapter III for definitions of these terms).  In 1AC , we sample from 

a Bernoulli distribution with parameter 1.a   In ,  2,..., ,iAC i m  we sample from a 

Bernoulli distribution with parameter ib .  Given that ia  and ib  are known for 1,..., ,i m  

the problem is that of determining the area-cell from which samples are drawn from a 

Bernoulli distribution with parameter a . 

D.  LITERATURE REVIEW CONCLUSIONS 

Upon review, the nature of recent sensor employment in complex environments, 

with consideration to the characteristics of emergent sensor technology, necessitates 

models that provide efficient allocation of scarce sensors in order to provide sensor 

operators and operational planners with the availability and flexibility required on today’s 

battlefields.  We acknowledge that significant research has been conducted on search 

effort allocation against a moving target.  Nevertheless, we hope to offer genuinely new 

insight by framing the problem in this operational context, in discrete time and space, 

while considering both sensor sensitivity and specificity, and through use of an adaptive 

algorithm based upon stochastic approximation to determine steady-state location 

distribution of a Markovian target with unknown transition matrix.  Additionally, the 

research to date in the field of sequential analysis has only considered eliminating 

procedures that attempt to find the “best” Bernoulli system—typically the one with 

maximum (unknown) parameter value.  In contrast, we wish to find the system whose 

parameter is most likely to be equal to a known value, which is different for each system 

and may not be the maximum.  This is an operationally relevant problem for static 
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targets, which we set forth to solve efficiently with a sequential eliminating procedure 

that is guaranteed to meet type-I and type-II error thresholds. 
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III. MODEL DEVELOPMENT 

In this chapter, we discuss the development and formulation of the models used in 

this thesis.  We start by introducing some theory and details of the SMT model, then 

proceed to outline the stochastic approximation algorithm used to provide solutions.  We 

then follow a similar pattern for the SST model and its sequential eliminating procedure.  

A. SMT MODEL 

1. Basic Framework 

Suppose that the area of operational interest (AOI) is partitioned into m area-cells.  

Let  1,..., m    be the steady-state distribution of the target.  The main goal is to 

estimate   by employing an imperfect sensor to look into the area-cells.  The sensor is 

characterized by its sensitivity and specificity.  For each area-cell, 

  sensor indicates detection in area cell  target is in area-cell ia P i i   

is the sensitivity, and 1 ib  is the specificity, where 

  sensor indicates detection in area cell  target is not in area-cell .ib P i i   

We assume that the sensitivity and specificity are known.  Suppose i ia b  (otherwise we 

can reverse the sensor cue, meaning that a “target present” indication is interpreted as 

“target absent,” and vice versa). 

Consider area-cell i .  Let ,1 ,2, ,...i iX X  be independent and identically distributed 

(IID) random variables that describe the sensor observations, where , =1 i jX if the sensor 

returns a detection (hot) signal in the ' thj  look into area-cell ,i  and , =0i jX  if the sensor 

returns a no detection (cold) signal.  Thus  , 1i j j
X




 is a collection of Bernoulli IID 

random variables, with    ,1  =1 1– .  i i i i iP X b a     We defer to further study the 

option to relax the IID assumption in order to allow for some correlation among sensor 

observations. 
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The decision variables are 1,..., ,mp p  the fraction of the search budget allocated to 

each area-cell, where 1ii
p   and 0ip  .  The search budget is described by n.  In this 

work, we are interested in determining efficient search allocations for n large.  It is 

therefore reasonable to assume that the TOI is already in steady-state. 

2. Large Search Budget Results 

Let ( )i iX p n  be the fraction of detections in area-cell i  by the time of the 

ip n   ’th look (in what follows we work with ip n  instead of ip n   ; since our results 

hold for n large, they continue to be true when the integrality condition is enforced, by 

working with a sequence that goes to infinity).  By the Strong Law of Large Numbers, we 

know that 

 
( )i i i

i
i i

X p n b

a b





  

with probability 1 as n   (Ross, 1996, p. 41). 

We choose to minimize the largest absolute error.  Thus, by standard results in 

large deviations theory (Dembo and Zeitouni, 1998) we have 

      
         

( )

 1

 exp  min , ,

i i i
i

i i

i i i i i i i

i i i i i i i i i i i

X p n b
P

a b

P X a b a b

p n I b a b I b a b

 

  

   

 
    

     

       

 (1.1) 

where  iI   is the large deviations rate function (see Dembo and Zeitouni, 1998, p. 4).  

Also, 

 

( ) ( )
max max

( )
max .

i i i i i i
i i

i i
i i i i

i i i
i

i
i i

X p n b X p n b
P P

a b a b

X p n
Pm

b

a b

   

 

    
             

 
 


 



 

 (1.2) 

Combining the outcomes of (1.1) and (1.2) results in 
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        

( )1
log max

                 min min , ,

i i i
i

i
i i

ii i i i i i i i i i ii

X p n b
P

n a b

p I b a b I b a b

 

   

 
    

       

 (1.3) 

as .n   

For a non-degenerate Bernoulli random variable ,1iX  with mean ,i  the 

large deviations rate function iI  is given by 

     1
log 1 log ,

1
i i

i i i i
i i

I
   
 

   
        

  

for 0 1.i   

The optimal allocation solves 
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and makes equal the exponential decay rates that appear in the right hand side of 

Equation (1.1), for each area-cell i. The (unique) solution is given by 

 
        
        

1

*
1

1

min ,

min ,

i i i i i i i i i i

i m
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I b a b I b a b
p

I b a b I b a b
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   







     


     
,  

where we choose   sufficiently small so that the argument inside each logarithm is non-

negative.  The steady-state distribution   is unknown, so it is replaced by the standard, 

sampling-based estimator that is obtained as the stochastic approximation algorithm 

(described in the next section) makes progress. 
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3. Stochastic Approximation Algorithm 

We first present the algorithm, with the intuition behind it following immediately 

thereafter. 

Initialization.  Let ,00 1iX   be our initial guess of  + –i i i ib a b  , and set 

   ,0 ,0 ,0 ,0,  and .i i i i i i i iX a b X a b             The initial guesses of the rate functions 

are 

    
 

,0,0
,0 ,0 ,0

,0 ,0

1
log 1 log ,

1

ii
i i i

i i

I
X X
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and 
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
  

  
          

    

The initial guess of the optimal allocation is 
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

  

Finally, set 0 . 

Algorithm SA. 

1. Generate a replicate   from the probability mass function 1, ,,..., mp p  . 

2. Update sample sizes: , 1 , , 1 ,1,  and  for .i i i              

3. Generate a sample from area-cell ,  (say) ,X
  , from a Bernoulli with parameter 

 1 .a b       

4. Update , 1 , 1 , 1 , 1 , 1, , , ,  and :X I I        
        

  

  , 1 , , ,
, 1

1
.X X X X

    





    


      

Set    , 1 , 1,  and .  LetX a b X a b           
       

   
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    
 

, 1, 1
, 1 , 1 , 1
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1
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1
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  
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
 
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  
 

  
          


  

 
    

and 

    
 

, 1, 1
, 1 , 1 , 1

, 1 , 1

1
log 1 log .

1
I

X X


  

 


 


  

  
 

  
          


 

 
 l  

, 1 , 1 , , 1 , , 1 , , 1 ,For ,  set ,  ,  ,  ,  and .i i i i i i i i ii X I I I I           
                

   

5. Update , 1 :p    
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 

  
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


 


 

+ +

+ +

  

6. Increase 1    and go back to 1. 

To see why our algorithm leads to the optimal allocations, let , / /i i     be the 

fractional allocations in stage   of the algorithm.  Hence, step 2 of the algorithm can be 

expressed as     , 1 , , / 1 ,i i iJ i              where   is the th  replicate of   

generated in step 1 of the algorithm, and  J   is the indicator function.  The recursion for 

, 1i   can be re-written as 

  *
, 1 , ,

1
,

1i i i ip       
   

 

where 

     *
, ,

1 1
.

1 1i i iJ i p p p     
     

 

If the error    becomes small relative to the    *
, 1i ip     term, then ,i   follows, as 

,  the path of the solution of the ordinary differential equations 

 * ,   1,..., ,i i ip i m      

which have *
ip  as the unique globally asymptotically stable point.  This suggests that if 

the variability introduced by the error at each stage is sufficiently small 
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      1i.e., var ... var o     , our algorithm provides fractional allocations that 

converge almost surely to the optimal allocations.  A rigorous analysis of this approach is 

discussed in Kushner and Yin (2003, p.170). 

B. SST MODEL 

1. Case 1: Independent Area-cells with No Target or One Target 

While not an operationally relevant or likely scenario, we treat the case where 

each area-cell either contains or does not contain a TOI, independent of all other area-

cells, because it brings intuition about the single-target cases (case 2 and case 3) of this 

chapter. 

 Procedure SP1 

Consider one area-cell, and suppose that the sensor operator prescribes an 

acceptable false-positive probability   and a false-negative probability  . The 

observations 1 2, ,...X X  are drawn from a Bernoulli random variable with parameter a if 

the area-cell contains a target, or from a Bernoulli random variable with parameter b if 

the area-cell does not contain a target.  Let 1 ...n nS X X    be the number of detections 

after n looks.  For 0 1p  , the likelihood function  11 nn
SSp p

  can be used to 

determine whether the unknown Bernoulli parameter is a  or b , because this likelihood is 

maximized by p a  if the area-cell contains a target and by p b  if it does not.  Hence 

the likelihood ratio 

  1

(1 )
, ,

(1 )

n n

n n

s n s

n n s n s

a a
x x

b b









   

if a target is present, and  1, , 0n nx x    if the area-cell is target-free, as n  .  This 

suggests that a judicious policy is to stop sampling when the likelihood ratio crosses an 

upper threshold and declare the target present, or when the likelihood ratio crosses a 

lower threshold and declare the target absent.  This approach may lead to an incorrect 

determination, but its probability can be prescribed ab initio by the end-user.  
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Define the hypotheses: 

 0 1:  Target absent from area-cell, and :  Target present in area-cell.    

Given our definitions of sensor sensitivity and specificity, these hypotheses are analogous 

to sampling from a Bernoulli distribution with parameter p  where 

 0 1: ,  or : .p b p a     

Define the stopping time 

   inf 1: ,nN n A B     

for the threshold constants ,  A B  such that .A B       Then we 

 0 0Reject  if  and Accept  if .N NB A      

For 0 , 1    prescribed by the end-user, the error probabilities are 

    0 1Type I error: |  and Type II error: |N NP B P A       . 

Taking logarithms, we can see that we reject 0  if 

 

1
loglog 1 .

1 1
log log

1 1

N

b
B aS N

a b a b
b a b a


 

    
       

  

(We know the denominator is positive; recall our assumption that ,a b  otherwise we 

can reverse the sensor cue)  We accept 0  if 

 

1
loglog 1 .

1 1
log log

1 1

N

b
A aS N

a b a b
b a b a


 

    
       

  

Siegmund (1985, p. 10) shows that 

    1
0 1NP B B      (1.4) 

and 

    1 1 .NP A A      (1.5) 

Hence, given operator defined tolerances and ,   by setting 

 
1

,  and ,
1

B A
 

 


 

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we are guaranteed to satisfy the error probability constraints.  Moreover, it is shown in 

Siegmund (1985, p. 11) that if Equations (1.4) and (1.5) hold with equality, then this 

approach minimizes the expected number of looks until crossing either boundary. 

Although (1.4) and (1.5) generally do not hold with equality, the algorithm is guaranteed 

to meet the error criteria  

Figure 3 displays two possible sample paths computed by SP1.  In this 

illustration, the white area represents the state space for the total number of detections 

after n looks  nS , and the two parallel dashed lines represent the bounds.  A path 

between the bounds is still undetermined; thus the procedure continues until the path 

exits via one of the bounds (hence, this area is known as the continuation region).  A 

sample path that exits the upper bound results in a declaration of target present in the 

area-cell, whereas a path exiting via the lower bound produces a target absent 

declaration. 
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Figure 3.   Example sample paths of the one-cell sequential procedure. 

Next we discuss the case of a single target hidden among m area-cells, with 

1.m    This case is difficult to analyze because knowledge about the presence/absence of 

a target in an area-cell yields light about the presence/absence of the target in other area-

cells; i.e., the declarations about target absence/presence in each area-cell are no longer 

independent.  In order to set the stage, we start with the case 2.m   

2. Case 2: Single Target and Two Area-cells 

 Procedure SP2 

For this slightly more complicated case, consider (as a starting point) two area-

cells, 0 1 and AC AC , with parameters    0 0 1 1,  and , ,a b a b  respectively, such that 



 30

 for 0,1i ia b i  .  For simplicity, we assume that both area-cells receive the same 

number of looks, and the goal is to terminate the inspection when there is enough 

evidence that the error bounds are met, i.e., we are confident to within our error 

tolerances of saying that the TOI is in a particular area-cell.  The two possible errors are: 

(i)   is the probability that the target is determined to be in 1AC  when it is in 0AC , and 

(ii)   is the probability that the target is determined to be in 0AC  when in reality it is in 

1.AC   This leads to the hypotheses 

 0 0 1 1:  Target located in ,  and :  Target located in .AC AC    

Let ,i nS  be the number of detections in ,  0,1,iAC i  after n  looks.  Consider the ratio of 

likelihood ratios n  (often referred to as the “odds ratio”), 

 1,

0,

,n
n

n







  

where 

 
 
 

,,

,,
,

1
.

1

i ni n

i ni n

n ss
i i

i n n ss
i i

a a

b b









   

We know that ,i n   if the target is present in 1AC  and , 0i n   if it is absent.  Hence 

0n   if the target is present in 0 ,AC  and n  otherwise.  This suggests considering 

the stopping time 

  inf{ 1: , }nN n A B     

for threshold constants ,  A B  such that .A B       Then we 

 0 0Reject  if ,  and Accept  if .N NB A      

Taking logarithms, we can see that we reject 0  if 

 0 0 01 1 1
1, 0,

1 1 0 0 1 0

1 11 1
log log log log ,

1 1 1 1N N

a b ba b a
S S N B

b a b a b a

       
              

 (1.6) 

and we accept 0  if 

 0 0 01 1 1
1, 0,

1 1 0 0 1 0

1 11 1
log log log log .

1 1 1 1N N

a b ba b a
S S N A

b a b a b a

       
              
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Siegmund (1985) shows that 

    1
0 1NP l B B      (1.7)   

and 

    1 1 .NP l A A      (1.8)  

Hence, given operator defined tolerances and ,   by setting 

 
1

,  and 
1

B A
 

 


 


, (1.9)  

we are guaranteed to satisfy the error probability constraints. 
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Figure 4 shows two possible sample paths for SP2.  Again, the continuation 

region is the area between the two dashed lines representing the bounds.  A path exiting 

the bound corresponding to  log B  indicates a belief of target presence in 1,AC  whereas 

an exit via the  log A  bound indicates belief of target presence in 0.AC    
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Figure 4.   Example sample paths for the two-cell SST model case. 

3. Case 3: Single Target in One of m>2 Area-cells 

 Procedure SP3 

Consider an AOI consisting of 2m   area-cells, and a single TOI located within 

the AOI.  Assume, without loss of generality, that the target is hidden in 1.AC   The 

operator can specify the error tolerance in many ways in this case; for example, “If the 

TOI is in 1,AC  I want the probability of saying that the TOI is in 2AC  to be less than 3%, 
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and the probability of saying the TOI is in 3AC  to be less than 2%,” etc.  For simplicity, 

in this thesis, consider that the only possible error in this situation is to conclude that the 

target is not in 1.AC   We call such event ICD (for incorrect determination), and let 

 P ICD  , for some  0,1   pre-specified by the operator. 

Let C  be the set of candidate area-cells; initially all sAC  are candidates to 

contain the target, so that  1,...,C m .  Let  1 ,n  be the largest likelihood ratio at stage 

n .  The idea is to sequentially drop an area-cell from consideration when there is 

sufficient evidence that it does not contain the target, i.e., when we are confident to 

within our error tolerance of saying that the TOI is not in that particular area-cell.  This 

suggests eliminating iAC  when   ,1 , / ,i nn B   where B  is selected to satisfy the bound 

  .P ICD    

To be more precise, consider area-cell 1 (which contains the TOI) and an arbitrary 

area-cell 1i  . Given thresholds 0 A B  , let  , 1, (inf 1: / , )i i n n AN n B     be the 

first time the odds ratio of area-cells 1 and i exits the interval ( , )A B .  Following 

Equations (1.7) through (1.9), with 1 ( 1) / 1mB A     ,we can guarantee the error 

bound  , 1,/ / ( 1)
i ii N NP B m    .  By Bonferroni’s inequality, it follows that 

      , 1, , 1,2
2 2

/ / .
1i i i i

m m
m

i N N i N Ni
i i

P ICD P B P B
m

 


 

     
      

Rather than pair-wise comparing all area-cells, it suffices to drop from consideration any 

area-cell i for which   ,1 , / ( 1) / 1i nn m     . 

The algorithm proceeds as follows: 

 Algorithm SE 

1. Obtain one signal (sample) from all area-cells .i C  

2. Compute , 1i n  and the ratios   , 11 , 1 / , .i nn i C     

3. If    , 11 , 1 / 1 / 1,i nn m      then remove i from .C  
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4. If 1,C   stop and declare the single AC  in C  the determined area-cell.  

Otherwise, increase 1,n n   and go back to 1. 

The SE algorithm is guaranteed to meet the operator-defined tolerance   for the 

probability of incorrect determination. 
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IV. COMPUTATIONAL STUDY 

This chapter presents results obtained by numerical experimentation in MATLAB.  

We begin our discussion with a description of a notional operational scenario to frame the 

SMT model.  We then explain the implementation of the stochastic approximation 

algorithm presented in Chapter III in the context of this scenario.  Finally, we discuss the 

results of the numerical experiments, and present an analysis of stochastic approximation 

algorithm performance.  We then repeat the process for the case of the SST model and 

sequential eliminating procedure.   

A.  SMT MODEL 

1.  Scenario Development 

For the purposes of our study, we place our notional area of operational interest 

(AOI) in a 39 square kilometer section of downtown Baghdad, Iraq.  Although the SMT 

model does not require that area-cells be uniform (in size or shape) or geographically 

adjacent, we partition our AOI in this manner as a matter of illustrative and 

computational convenience.  Thus, we begin by discretizing the AOI into uniform area-

cells of size 500 by 500 meters.  Figure 5 depicts the resulting AOI, consisting of 156 

area-cells in a 13 by 12 rectangular grid. 
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Figure 5.   Discretized notional scenario Area of Operational Interest. 
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At the beginning of the scenario, a single, randomly moving high value target of 

interest (TOI) is located somewhere within the AOI.  In our case, suppose the TOI is a 

medium-sized white sport utility vehicle known to be an insurgent weapons cache.  An 

intelligence agency has recorded the TOI’s hyperspectral signature and provided the 

library data to the searcher.  We construct the initial TOI probability distribution by 

starting with a Threat Map (Riese, 2006), which we aggregate and normalize to produce a 

probability map that is compatible with our AOI, and whose probabilities sum to one.  

Table 1 summarizes the initial probability map, with probabilities to three decimal places. 

We assume the TOI moves in a Markovian fashion, with a transition matrix that is 

unknown to the searcher.  Appendix C shows the non-zero columns of the ground-truth 

transition matrix used in our scenario.  Table 2 depicts the true steady-state distribution of 

TOI location (again, unknown to the searcher) resulting from this transition matrix, to 

three decimal places.  For purposes of the numerical experiment, we assume that the 

target has already reached steady-state.   

The searcher possesses a UAS-borne hyperspectral sensor, and a certain number 

  of available looks, or search budget.  In order to preserve this thesis as unclassified, we 

assign reasonable random values of hyperspectral sensor sensitivity and specificity 

against a known signature.  Specifically, we assign a random uniform value between 0.75 

and 0.99 for sensitivity and a random uniform value between 0.89 and 0.99 for specificity 

to each area-cell, as depicted to two decimal places in Table 3.  It is important to note 

that, despite our somewhat cavalier method of assigning these numbers, determining the 

appropriate values operationally can be highly complex (as discussed in Chapter II), and 

is outside the scope of this thesis.  It is left as an option for further study to account for 

noise in the measured values of sensitivity and specificity. 
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Table 1.   Initial TOI probability map, derived by normalizing the aggregate Threat Map 
(After Riese, 2008). 
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Table 2.   Notional TOI steady-state distribution. 

 

 



 40

 

 

 

Table 3.   Notional hyperspectral sensor sensitivity (center cell values) and specificity 
(bottom cell values). 
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In each time step, the searcher allocates one look in a chosen area-cell, and the 

search budget is subsequently decremented.  Upon each look, the sensor returns a signal 

of hot if it senses detection (of course, correct detections and false positives are 

indistinguishable to the sensor), and a signal of cold otherwise.  The scenario then 

advances forward one time step, and the process continues until the entire search budget 

is exhausted.  Recall that the objective for the searcher is to determine the steady-state 

location distribution of the TOI as quickly as possible (to within the absolute error 

tolerance), based on the signals from the sensor and knowledge of its sensitivity and 

specificity. 

2.  Stochastic Approximation Algorithm Implementation and Results 

We implement our model in the framework of the described notional operational 

scenario, using MATLAB.  Sample MATLAB code for the SA algorithm may be found in 

Appendix A. 

In order to evaluate the SA algorithm’s ability to approximate the true steady-state 

distribution of the target and the associated near-optimal sampling rates, one replication 

of 50,000 iterations was performed on the 156-cell AOI.  Table 4 depicts the algorithm’s 

cell sampling rates compared to the theoretical optimal area-cell sampling rates which, as 

discussed in Chapter III, depend not only on the absolute error tolerance   ,  sensor 

sensitivity   ,ia  and specificity  1 ib  values, but also on the true steady-state 

distribution  .i   Cell sampling rates are given to four decimal places.   
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Table 4.   Theoretical optimal search frequencies (center cell values) and SA algorithm 
resultant search frequencies (bottom cell values, based on 50,000 iterations). 
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It is difficult to infer a degree of model success based upon these values, beyond 

the fact that the SA algorithm provides sampling rates that appear to be on the same order 

of magnitude as the theoretical optimal sampling rates.  It is therefore more useful to 

evaluate the model based upon its ability to estimate the TOI’s steady-state distribution to 

within a certain absolute error tolerance, which we provide below in Section 3.  

Figure 6 depicts estimates of the true steady-state target position distributions for 

three select area-cells.  The estimates provided by the SA algorithm are compared to the 

estimates generated by a uniform random search.  Both estimates appear to converge 

upon the true steady-state distribution as the total number of looks becomes large, in 

accordance with the Strong Law of Large Numbers.  One might conjecture from this 

figure that the total error—depicted by the aggregate area between each estimate and the 

true steady state after the transient has worn off—is less for the SA estimate than for the 

random uniform.  However, it is difficult to say whether this is in fact the case, or just an 

artifact of this particular numerical experiment, as this is only the figure only shows one 

replication’s data for three area-cells.  This further suggests that a more useful measure of 

model effectiveness will be the error decay rate, again provided in Section 3. 
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Figure 6.   Number of looks versus steady-state estimate for one sample path of three 
particular area-cells. 

In order to evaluate the absolute error rate, we count the number of replications 

for which the algorithm’s estimate of the steady-state distribution is outside of some pre-

defined absolute tolerance (in our case, an absolute error tolerance of 0.05 was used), for 

search budgets at each integer level between 1 and 6500, and divide by the total number 

of replications.  Due physical memory and time constraints (a single replication on the 

156-cell AOI took over two hours to compute), the absolute error decay rate was 

evaluated by conducting 10,000 replications with a simplified AOI of only four area-cells 

(results are depicted in Figures 7 and 8).  However, the error rate results generalize to 

problems of any size, as shown in Chapter III. 

3.  Analysis of Stochastic Approximation Algorithm Performance 

Recall that the measure of effectiveness in this model is to minimize the 

probability that the resultant absolute error in the estimate of steady-state distribution is 
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greater than some tolerance  .  In Chapter III, we acknowledged that any search plan 

that allocates a positive fraction of the search budget to all cells would lead to an absolute 

error rate that decays to zero exponentially as the search budget goes to infinity.  Figure 6 

supported this by showing that the SA algorithm estimate and a random uniform estimate 

both converge to the true steady-state values.   

Additionally, we claimed that the search frequencies determined by the SA 

algorithm exhibit error rates that decay at the fastest rate possible.  Figure 7 depicts the 

average resultant absolute error decay rates (over 10,000 sample paths of 6,500 iterations 

on a simpler, four-cell problem) for four different strategies:  

 A random uniform search. 

 A constant naïve estimate, where the determination thresholds are the 
midpoints between and .i ia b   If the allocations are inversely proportional to 

the distance 
( )

2
i i

i

a b
a


 , the allocation becomes 

 
 

1

1

1

ˆ i i
i m

j jj
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p
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






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 The stochastic approximation algorithm search discussed in this section. 

 A hypothetical optimal search plan in which the searcher knows a priori the 
theoretical optimal search frequencies derived in Chapter III.   
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Figure 7.   Large number of looks versus the logarithm of probability of error. 

As predicted, the a priori plan appears to provide a bound on error decay rate and 

as the search budget grows large, the SA algorithm outperforms the random uniform 

search.  The naïve allocation performs relatively well, with an error rate tending more 

toward the optimal than toward the random (see Figure 7).   

One important feature of the model deserves discussion.  Recall that a limitation 

of the SMT model is that it applies only to situations involving large search budgets.  

Note that, for a relatively small search budget (say, less than about 1000 in the current 

example), any efficiency gained by the SA algorithm is negligible.  In fact, it is often the 

case that the random uniform error rate decays faster for than that of the SA algorithm 

when the number of looks is small (see Figure 8).  Additionally, the naïve allocation 

performs nearly as efficiently as the random in this situation. 
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Figure 8.   Small number of looks versus the logarithm of probability of error. 

B. SST MODEL 

1.  Scenario Development 

Consider the same discretized AOI as for the adaptive case (see Figure 5).  Sensor 

sensitivity and specificity remain as in Table 3.  We first consider the case where each 

area-cell either contains or does not contain a stationary TOI, independent of all other 

cells, and refer to this as case 1.  This allows us to perform the calculations on one area-

cell, and generalize the results to all area-cells.  We then modify the scenario to the case 

in which a single stationary TOI is present in only one of two area-cells (case 2).  Finally, 

we generalize to the case of 2m   area-cells (case 3). 
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2. Sequential Eliminating Procedure Implementation and Results 

As with the SMT model, we choose MATLAB as a computational tool for the 

numerical experiments for the SST model.  Sample MATLAB code for the sequential 

eliminating procedure may be found in Appendix B. 

For case 1, an arbitrary area-cell containing a TOI was chosen.  To observe the 

effect of decreasing the difference between sensor sensitivity and (1-specificity) on the 

expected number of looks, b  was held constant at 0.35, and a  was varied from 0.7 to 

0.35 at increments of 0.002.  10,000 replications were conducted at each increment.  

Predictably, the closer the values of a  (sensitivity) and b  (1-specificity) are to one 

another, the larger the number of looks required to make a determination.  Figure 9 

verifies this intuition; in fact, the increase appears to be polynomial in the complement of 

the difference. 
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Figure 9.   Polynomial increase in number of looks as difference between  and a b  gets 
small ( 1,  0.05).m    
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For cases 2 and 3, we arbitrarily (and without loss of generality) placed the target 

in 1AC .  The error tolerance   remained fixed at 0.05.  Starting with 2m   area-cells 

and working up by adding one AC  per iteration until encompassing all 156 area-cells, 

we performed 50,000 replications at each iteration in order to determine achieved error 

rates and expected number of looks as m  increases.  Figure 10 depicts the near-linear 

increase in observed number of looks as m  increases for case 3 with fixed 0.05.   
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Figure 10.   Near-linear relationship between m  and number of looks, case 3, 0.05.   

To determine the effect of varying error tolerance, we chose to fix 10m  .  The 

type-I error probability threshold   was varied between 0.01 and 0.1 at 0.001 

increments.  At each level of  , 50,000 replications were performed to calculate the 

observed miss rate and average number of looks until a determination of target presence 

or absence was made.  Naturally, the number of expected looks decreases with an 

increase in error tolerance for the sequential procedure.  Figure 11 highlights the 

relationship. 
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Figure 11.   Effect of varying   on expected number of looks (m=10). 

3. Analysis of Sequential Eliminating Procedure Performance 

Recall that the goal of the sequential eliminating procedure is to indicate target 

location with an accuracy rate guaranteed to meet operator-specified error tolerances, 

within a reasonable number of expected looks.  One possible measure of performance is 

the amount of slack between the error tolerance and the observed error rate.  Intuitively, 

the less slack, the fewer number of expected looks would be required.  However, if a 

method with the same expected number of looks as the sequential eliminating procedure 

exhibits a larger observed error rate, it is reasonable to state that the sequential 

eliminating procedure is more efficient than such a method.  (Alternatively, one could 

invoke a method exhibiting the same achieved error rate and compare the expected 

number of looks, but we choose the former scheme for ease of computation and 

illustration.)   

For comparison purposes, consider a naïve allocation method with the same total 

expected number of looks as the sequential eliminating procedure.  Let m be the total 
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average number of looks for the sequential eliminating procedure with an AOI consisting 

of m area-cells.  Let m  be the average number of looks per area-cell for the naïve 

allocation, which allocates an equal number of looks to each area-cell, and does not 

eliminate area-cells from contention, so that / .m m m    (Since m  is likely not an 

integer value, we set  

 
 w.p. 

w.p. 1- ,

   m

m

m

p

p






   
  

 

where ,m mp        in order to approach the desired average over many iterations.)  

After m  looks into each area-cell, the area-cell with the largest likelihood ratio is 

declared to contain the target for the naïve model.  We begin our comparison by 

examining the effect of varying   with m=10.  We then fix   and complete 5,000 

iterations at each integer 3,...,156,m   comparing the observed error rates of the 

sequential eliminating procedure with that of the naïve model. 

Figure 12 shows that, with fixed ,  a b  and   for the multiple-cell case, an 

increase in   appears to affect an increase in the observed miss rate in a manner that 

preserves the ratio of   and the observed rate for the sequential eliminating procedure.  

Also note that, for the same average number of looks at each value of ,  the observed 

error rate for the naïve method is considerably larger for all values of   (indeed, the 

naïve rates exceed the threshold for all values of  ). 
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Figure 12.   Effect of varying   on observed error rates (m=10). 

Figure 13 illustrates how the observed error rate for the sequential eliminating 

procedure appears to converge as the number of area-cells becomes large.  The observed 

rate is arguably reasonable when compared to the threshold.  As with the case of varying 

,  the error rate for the naïve method is considerably higher than that of the sequential 

eliminating procedure for the same total number of looks for all values of m.  Indeed, the 

naïve error rate is once again consistently above the threshold. 
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Figure 13.   Achieved error rates with a threshold of 0.05, based on 5,000 iterations at each 
integer level of 3 to 156 cells. 
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V. CONCLUSIONS AND FUTURE WORK 

This chapter summarizes the findings of the computational study, as well as offers 

some possible areas for future study, for both of the models presented in this thesis. 

A. CONCLUSIONS 

1. Single Markov Target Model 

Overall, we conclude that the stochastic approximation algorithm provides 

sufficiently improved solutions over all other strategies for large search budgets.  While 

this may not be significant on the tactical level (which is often characterized by a 

constrained search budget), it is certainly appropriate on the operational-strategic level 

wherein one is concerned with long-term Intelligence, Surveillance, and Reconnaissance 

operations and Target of Interest pattern recognition.  Additionally noteworthy is that, for 

circumstances in which the stochastic approximation algorithm is unavailable, the naïve 

estimate provides sufficiently improved solutions over the uniform random strategy for 

large search budgets, and better solutions than the stochastic approximation strategy for 

small search budgets. 

2. Single Static Target Model 

The sequential eliminating procedures presented in this thesis provide efficient 

results guaranteed to meet desired error rate thresholds for a variety of scenarios.  While 

the gap between the error threshold and the achieved error rates might conceivably be 

tightened, any efficiency gained in terms of reducing the number of looks required is 

likely not operationally significant when compared with the risk of violating the 

threshold.  We showed that a naïve, non-eliminating method not only demonstrates 

consistently higher error rates for the same total number of looks for all appropriate 

values of both number of area-cells and error tolerance;  there is also no guarantee that 
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the naïve procedure’s results meet the operator-prescribed error tolerance.  It is therefore 

reasonable to conclude that the sequential eliminating procedure is more efficient than the 

naïve allocation method. 

B. AREAS FOR POSSIBLE FUTURE STUDY 

1. Single Markov Target Model 

As referred to throughout this thesis, there are several areas deserving further 

study regarding our Single Markov Target model that we were simply unable to treat here 

due to time and scope limitations.  These include, for example:  

 Study the effects of pre-steady-state target Markovian movements. 

 Study the effects non-Markovian movements. 

 Study the effect of counter-detection; say, a target of interest becomes alerted 

to the presence of the sensor with a certain probability following a look into 

the area-cell containing the target of interest, and subsequently moves 

according to a different transition matrix. 

 Allow for spatial and/or temporal correlation among sensor observations.  

 Consider noise within the observed measurements of sensor sensitivity and 

specificity.  

 Determine breakpoint criteria for when the adaptive algorithm is 

advantageous (i.e., what constitutes a “large” search budget). 

 Consider multiple sensors and/or multiple targets. 

2. Single Static Target Model 

As with the Single Markov Target model, areas for possible further study include 

allowing for multiple targets and/or sensors, and modeling sensor sensitivity and 

specificity stochastically.  It may be of interest to model counter-detection by, say, 

decreasing the associated value of sensor sensitivity with a certain probability following a 

look into the area-cell containing the target of interest.  Additionally, a formal sensitivity 

analysis is recommended in order to determine any operational significant efficiency 
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gained by tightening the slack between observed error rate and the error tolerance in 

order to decrease the expected number of looks.  Finally, it may be worthwhile to 

investigate other ways in which to specify error tolerances for the multiple-cell case such 

as allowing the error tolerance to vary by area-cell. 
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APPENDIX A 

The following is MATLAB code used for the adaptive algorithm, using a four-cell 

example problem. 

function bos=markov() 
iter=7000;% number of iterations 
reps=7000 
ss=[0.1 0.4 0.3 0.2];%target steady state distn (unknown to searcher) 
a=[0.8 0.94 0.7 0.95];%sensitivity 
b=[0.1 0.04 0.15 0.05];%1-specificity 
prior = [.4, .1, .2, .3];%target pmf, (known to searcher) 
mu=a.*(ss)+b.*(1-ss);%true mu, the value to which # of detects will 
converge 
dim=size(ss,2); % # area-cells 
epsilon=0.05; %absolute error tolerance 
lb=b+(a-b).*(ss-epsilon) % lower bound of adequate allocation 
ub=b+(a-b).*(ss+epsilon)% upper bound of adequate allocation 
iub=ub.*log(ub./mu)+(1-ub).*log((1-ub)./(1-mu));%ld rate function of ub 
ilb=lb.*log(lb./mu)+(1-lb).*log((1-lb)./(1-mu));%ld rate function of lb 
truedist=min(ilb,iub); % true ld rate function 
truefrequencies=(1./truedist)./sum(1./truedist);%true optimal search 
frequencies 
nfreqs=(1./(a-b))./sum(1./(a-b));%naive search frequencies 
for k=1:reps 
    x=b+(a-b).*prior;% initializes x for adaptive based on prior pmf 
    xr=x;% initializes x for random 
    xt=x;% initializes x for a priori 
    xn=x; 
    gub=x+(a-b)*epsilon; 
    glb=x-(a-b)*epsilon; 
    ixub=gub.*log(gub./x)+(1-gub).*log((1-gub)./(1-x));%ld rate 
function of ub 
    ixlb=glb.*log(glb./x)+(1-glb).*log((1-glb)./(1-x));%ld rate 
function of ub 
    dist=min(ixub,ixlb); %ld rate function of min 
    bucket=dist.^(-1)/sum(dist.^(-1));%pmf for ld rate function 
    p5=[0, truefrequencies(1:dim-1)]; %interval setup for a priori 
    p6=truefrequencies(1:dim); %interval setup for a priori 
    p7=[0, nfreqs(1:dim-1)]; %interval setup for naive 
    p8=nfreqs(1:dim); %interval setup for a naive 
     
    s=ones(1,dim); %init sample sizes to one for each cell 
    sr=s;%init sample sizes to one for each cell 
    st=s;%init sample sizes to one for each cell 
    sn=s; %init sample sizes to one for each cell 
 
    for i=1:iter 
        p1=[0, bucket(1:dim-1)];%interval setup for adaptive 
        p2=bucket(1:dim);%interval setup for adaptive 
        u=rand;%rand for xi 
        u3=rand;%rand for a priori index 
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        index=sum((1:dim).*(cumsum(p1)<=u).*(u<cumsum(p2)));%xi 
        indexr=unidrnd(4);%randint(1,1,[1,4]);%random uniform cell 
        indext=sum((1:dim).*(cumsum(p5)<=u3).*(u3<cumsum(p6)));%cell 
based on a priori optimal allocation 
        indexn=sum((1:dim).*(cumsum(p7)<=u3).*(u3<cumsum(p8)));%cell 
based on naive est 
        s(index)=s(index)+1;%update sample size bernoulli for adaptive 
        sr(indexr)=sr(indexr)+1;%update sample size for random 
        st(indext)=st(indext)+1;%update sample size for a priori 
        sn(indexn)=st(indexn)+1;%update sample size for naive 
  
        r=rand<=mu(index);%detection bernoulli for adaptive 
        rr=rand<=mu(indexr);%detection bernoulli for random 
        rt=rand<=mu(indext); 
        rn=rand<=mu(indexn); 
  
        x(index) = x(index)+(r-x(index))/s(index);%update avg for 
adaptive 
        xr(indexr) = xr(indexr)+(rr-xr(indexr))/sr(indexr);%update avg 
for random 
        xt(indext) = xt(indext)+(rt-xt(indext))/st(indext);%update avg 
for a priori 
        xn(indexn) = xt(indexn)+(rn-xn(indexn))/sn(indexn);%update avg 
for a priori 
  
        gub(index)=x(index)+(a(index)-b(index))*epsilon; 
        glb(index)=x(index)-(a(index)-b(index))*epsilon; 
  
        ixlb(index)=glb(index).*log(glb(index)./x(index))+(1-
glb(index)).*log((1-glb(index))./(1-x(index)));%ld rate function of lb 
        ixub(index)=gub(index).*log(gub(index)./x(index))+(1-
gub(index)).*log((1-gub(index))./(1-x(index)));%ld rate function of ub 
 
        dist=min(ixub,ixlb);%l.d. rate function update 
        bucket=dist.^(-1)/sum(dist.^(-1));%pmf for ld rate function 
        pihat=(x-b)./(a-b); 
        pihatr=(xr-b)./(a-b); 
        pihatt=(xt-b)./(a-b); 
        pihatn=(xn-b)./(a-b); 
        pihats(i,:)=pihat; 
        pihatsr(i,:)=pihatr; 
        pihatst(i,:)=pihatt; 
        pihatsn(i,:)=pihatn; 
 
        wrong(k,i)=mean(abs(pihat-ss)>epsilon); 
        wrongr(k,i)=mean(abs(pihatr-ss)>epsilon); 
        wrongt1(k,i)=mean(abs(pihatt-ss)>epsilon); 
        wrongn(k,i)=mean(abs(pihatn-ss)>epsilon); 
        wrongt(k,i)=(exp(-i./sum(1./truedist))); 
    end 
  
    k 
end 
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pwrong=mean(wrong); 
pwrongr=mean(wrongr); 
pwrongt=mean(wrongt); 
pwrongt1=mean(wrongt1); 
pwrongn=mean(wrongn); 
pihat 
%pihatr 
%pihatt 
ss 
truefrequencies 
frequencies=(s-1)/iter 
truemu=ones(iter,1)*mu; 
sstate=ones(iter,1)*ss; 
truefreqs=ones(iter,1)*truefrequencies;  
% 
plot(1:iter,log(pwrong),'b',1:iter,log(pwrongr),'r',1:iter,log(pwrongt)
,'g',1:iter,log(pwrongt1),'c',1:iter,-(1:iter)/sum(1./truedist),'y') 
% plot(1:iter,log(pwrong),'b',1:iter,log(pwrongr),'r',1:iter,-
(1:iter)/sum(1./truedist),'g') 
%     count 
%     countr 
%     countt 
%     plot(perrort) 
%     plot(sstate) 
%     avgtgt=tgt./iter 
  
end 
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APPENDIX B 

The following is MATLAB code used for the sequential eliminating procedure, 

varying the number of area-cells from three to 156, with the TOI located in 1.AC  

function bos=seq3() 
reps=5000;% number of replications 
  
at=[0.764377369 0.78013237  0.763048438 0.829653856 0.783187936 
0.861500282 0.7940199   0.778956788 0.980568175 0.767952462 0.882596083 
0.802665581 0.932069314 0.857595049 0.861134275 0.901862303 0.832543914 
0.921926775 0.858781837 0.857607031 0.894258574 0.760550857 0.77867332  
0.92494074  0.827953419 0.872731785 0.767612636 0.851690738 0.809917345 
0.771560887 0.902829194 0.883563397 0.879007539 0.906012706 0.9615216   
0.833174881 0.789552179 0.945467317 0.946057278 0.930473901 0.945149796 
0.895457497 0.818231974 0.827209992 0.913855436 0.826787338 0.952930998 
0.876803421 0.885381608 0.987431778 0.953051    0.906448316 0.770497982 
0.962819268 0.930193065 0.852155027 0.83147321  0.951727379 0.923018754 
0.837080099 0.953565399 0.752180624 0.755233645 0.755896192 0.889144868 
0.828107202 0.799289558 0.857286381 0.82134985  0.929926846 0.929295357 
0.868960987 0.863498849 0.874244484 0.796966453 0.983966875 0.76516679  
0.903890473 0.812371407 0.750526499 0.932096997 0.848402882 0.812296006 
0.817516651 0.771200914 0.781980008 0.765662689 0.845692943 0.965458891 
0.771303387 0.829035747 0.834196225 0.833510047 0.918708516 0.891839986 
0.880859016 0.768251293 0.80372802  0.760343658 0.945212372 0.840359708 
0.965729992 0.887229029 0.855403358 0.821667225 0.940151288 0.824287152 
0.79544627  0.978719313 0.915907164 0.791414375 0.768399415 0.783205648 
0.762326265 0.809792289 0.914770558 0.861269546 0.754924019 0.848123228 
0.883559472 0.935584267 0.847992869 0.773887555 0.935168021 0.987139592 
0.864397497 0.914056384 0.868620928 0.943567157 0.792172003 0.826948986 
0.942816637 0.831512882 0.942243958 0.940664075 0.965565544 0.973488383 
0.884480939 0.967052613 0.943980301 0.886883281 0.768455672 0.92670777  
0.907405577 0.86379577  0.759258625 0.908502666 0.90579148  0.817439813 
0.869440723 0.778185422 0.800988437 0.885927148 0.811211476 0.802932309 
0.785080974];%sensitivity 
 
bt=[0.906654853 0.98527289  0.91816009  0.902462055 0.915477538 
0.913719876 0.971642453 0.908758043 0.934030489 0.90977892  0.934459462 
0.937396994 0.896209577 0.929611542 0.985859583 0.909468618 0.93694572  
0.906367741 0.891722103 0.90094522  0.93156408  0.905770115 0.972761166 
0.934650746 0.906862242 0.917578657 0.981811892 0.960555418 0.975909378 
0.907941657 0.919534438 0.964367434 0.986505691 0.904215257 0.899192437 
0.955030441 0.89127477  0.909064212 0.905190465 0.899806225 0.964836142 
0.9732597   0.965857206 0.892254905 0.950801841 0.987436101 0.914702487 
0.970323846 0.962837446 0.941569896 0.935252889 0.942213234 0.975326054 
0.901042224 0.944637104 0.94282935  0.979415014 0.939440625 0.984336508 
0.978190054 0.968984315 0.919398871 0.978097185 0.98411116  0.988082341 
0.971473421 0.929638624 0.981566707 0.902712755 0.902254802 0.926404132 
0.935198232 0.95602367  0.918609615 0.910620992 0.983065473 0.905257303 
0.979286096 0.92988011  0.894958239 0.90850487  0.896762726 0.974151238 
0.914650274 0.896422526 0.937486111 0.932364963 0.941406866 0.939012372 
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0.91097013  0.981140789 0.898929362 0.900527968 0.949253233 0.914888938 
0.973041428 0.958736224 0.925715353 0.966138684 0.987483359 0.958895003 
0.918057093 0.891750316 0.932049333 0.986324799 0.982544329 0.937989753 
0.961941928 0.92095397  0.938774655 0.918541468 0.989795575 0.941646451 
0.89766265  0.917726817 0.964171433 0.985582852 0.903957667 0.902163265 
0.931611186 0.899762023 0.935003204 0.943984386 0.959889236 0.938170377 
0.988183384 0.988132645 0.898435955 0.893955496 0.916125454 0.909072979 
0.918635311 0.987031639 0.909438164 0.976258074 0.907865355 0.925333803 
0.978966905 0.897238205 0.979359218 0.921552236 0.984621555 0.978638513 
0.984093059 0.895391585 0.898494613 0.957411131 0.988563306 0.98491185  
0.92861628  0.964018148 0.945909754 0.934066873 0.933560749 0.893793761 
0.985435625];%1-specificity 
 
dim=size(at,2);  
alpha=0.05; 
capB=(dim-1)/alpha-1; 
  
target=zeros(1,dim);%1 if target present 
target(1)=1;%1 if target present 
mu=at.*(target)+bt.*(1-target);  
%---------------------------------------------------------------------- 
for z=3:dim 
    oa=0;%keep track of errors for error rate calc 
    capB=(z-1)/alpha-1; 
    z 
    a=at(1:z); 
    b=bt(1:z); 
    for k=1:reps 
  
        c=ones(1,z);%indicators; "1" means that cell is still a 
contender 
        s=zeros(1,z);%number of detections 
        looks=0;%#looks 
        stage=0; 
  
        while (sum(c)>1) 
            stage=stage+1; 
            %         c 
            for i=1:z 
                if c(i)==1 
                    looks=looks+1; 
                    r(i)=(rand<=mu(i)); 
                    s(i)=s(i)+r(i); 
                    like(i)=(a(i)^s(i)*(1-a(i))^(stage-
s(i)))/(b(i)^s(i)*(1-b(i))^(stage-s(i)));%likelihood ratios 
                end 
            end 
            maxrat=find(like==max(like)); 
            for q=1:z 
                if c(q)==1 
                    ratio(q)=like(maxrat(1))./like(q);%odds ratios 
                end 
            end 
            for j=1:z 
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                if ratio(j)>=capB && sum(c)>1;%removes "losers," but 
keeps from removing the last contender 
                    c(j)=0; 
                end 
            end 
  
        end 
  
        numLooks(k)=looks; 
        declareTgt(k)=find(c==1); 
  
        oa=oa+(declareTgt(k)~=1); 
  
    end 
  
    oarate(z)=oa./reps; 
  
    avgLooks(z)=mean(numLooks); 
end 
plot(avgLooks) 
end 
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APPENDIX C 

The following tables describe the non-zero columns of the transition matrix used 

in the adaptive problem of this thesis. 

From \To 45 57 58 70 71 76 77 78 88 89 90 100 101 102 103 104 112 113 114

1 0 0 0 0 0 0 0.1 0 0.1 0 0.1 0 0 0.1 0 .1 0 0.2 0.2 0 .1

2 0 0.1 0 0 0.1 0 0 0 0.1 0 0.1 0 0 0 0 0 0.1 0.4 0 .1

3 0 0 0 0 0 0 0.1 0 0 0 0 0.2 0.1 0 0 0 0.2 0 0.4

4 0 0 0 0 0 0.1 0 0 0 0.1 0 0.1 0.1 0 .1 0 0 0 0.1 0 .4

5 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0 .1 0 0.1 0 0.2 0 .4

6 0 0 0 0 0 0.1 0 0 0.1 0 .1 0 0.1 0 0 0.1 0 .1 0 0 0.4

7 0 0 0 0.1 0 0 0.1 0 0 0.1 0 .1 0 .1 0 0.1 0 0.1 0 0 0.3

8 0 0 0 0 0 0 0.1 0 0 0 0 0 0.2 0 0.1 0 .1 0 .2 0 0.3

9 0 0 0 0 0.1 0 0 0 0 0.1 0 .1 0 0.1 0 0 0 0.3 0 0.3

10 0 0 0 0 0 0 0.1 0 0 0.1 0 .1 0 0 0.1 0 .1 0 0 0.4 0 .1

11 0 0 0 0 0 0 0 0 0 0 0.1 0 .2 0 0.1 0 .1 0 0.2 0.1 0 .2

12 0 0 0 0.1 0 0.1 0 0.1 0 0 0 0.1 0 0 0.1 0 .1 0 .2 0.1 0 .1

13 0 0 0 0.1 0 0.1 0 0.1 0 0.1 0 .1 0 0 0.1 0 .1 0 0.1 0 0.2

14 0 0 0 0 0 0 0 0 0.1 0 .1 0 .1 0 .1 0.1 0 0.1 0 0 0.1 0 .3

15 0 0 0 0 0.1 0 0 0 0.1 0 .1 0 .1 0 0 0 0.2 0 .1 0 .1 0.1 0 .1

16 0 0 0 0 0.1 0.1 0 .1 0 0.1 0 .1 0 0 0.1 0 .1 0 0 0 0 0.3

17 0 0 0 0 0 0.1 0 .1 0 0 0 0.1 0 0 0 0 0.3 0 .1 0.1 0 .2

18 0 0 0.1 0 0 0 0.1 0.1 0 0 0 0 0 0 0.1 0 0.1 0.3 0 .2

19 0 0 0 0 0 0 0.1 0 0 0.1 0 0.1 0.1 0 .1 0 .1 0 .1 0 .1 0.1 0 .1

20 0 0 0 0 0 0 0 0 0.1 0 .1 0 .1 0 0 0 0.1 0 0 0.3 0 .3

21 0 0 0.1 0 0 0 0 0 0 0 0.1 0 0 0.1 0 .2 0 .1 0 .1 0.1 0 .2

22 0 0 0.1 0 .1 0 0 0 0 0 0 0 0.1 0 0.2 0 .1 0 0.1 0.2 0 .1

23 0 0.1 0 0 0 0 0 0 0.1 0 0 0 0.1 0 0.1 0 .2 0 .1 0 0.3

24 0 0 0 0 0 0 0 0 0.1 0 .1 0 .1 0 0 0 0.1 0 0.1 0 0.5

25 0 0 0 0 0.1 0 0.1 0.1 0 0 0 0.1 0 0 0.1 0 .1 0 .1 0.1 0 .2

26 0 0 0 0 0.1 0 0 0.1 0 .1 0 .1 0 0.1 0 0 0.1 0 .1 0 0.2 0 .1

27 0 0 0 0 0 0 0.1 0.1 0 0 0.1 0 .1 0 0 0.2 0 .1 0 0.2 0 .1

28 0 0 0 0 0 0 0 0 0 0 0.1 0 0.2 0 .2 0 0.1 0 0.3 0 .1

29 0 0 0 0 0 0 0 0 0.1 0 0.1 0 0.1 0 .1 0 .1 0 .2 0 0.1 0 .2

30 0 0 0 0.1 0 0 0 0 0 0 0 0 0.2 0 .1 0 0 0 0.5 0 .1

31 0 0 0 0 0.1 0 0.1 0.1 0 0 0.1 0 0.1 0 0.1 0 .1 0 0.1 0 .2

32 0 0 0 0 0 0 0.1 0 0.1 0 0 0 0.2 0 .1 0 0.2 0 0.1 0 .2

33 0 0 0 0 0 0 0 0 0.1 0 .1 0 .1 0 0.1 0 .1 0 .1 0 0.1 0 0.3

34 0 0 0 0 0 0 0 0.1 0 0.1 0 0 0 0.2 0 0.2 0 .1 0.2 0 .1

35 0 0 0.1 0 .1 0 0 0.1 0 0.1 0 0 0 0 0 0.2 0 .1 0 0.2 0 .1

36 0 0 0 0 0 0 0.1 0.1 0 .1 0 .1 0 .1 0 0.1 0 .1 0 .1 0 0 0.1 0 .1

37 0 0.1 0 0 0 0 0 0 0.1 0 .1 0 0 0.1 0 .1 0 0.2 0 .1 0 0.2

38 0 0 0 0.1 0 .1 0 0 0 0 0.1 0 0.1 0 0.1 0 .1 0 .1 0 .1 0.1 0 .1

39 0 0 0 0 0 0 0 0 0.1 0 0.1 0 0.2 0 0 0 0 0.3 0 .3

40 0 0 0 0 0.1 0 0 0 0 0 0.1 0 0.2 0 0.1 0 .2 0 0.1 0 .2

41 0 0 0 0 0 0 0.1 0 0 0 0 0.1 0 0 0 0.3 0 .2 0 0.3

42 0 0.1 0 0 0 0.1 0 0 0 0 0.1 0 .1 0.1 0 0.1 0 .1 0 0 0.3

43 0 0 0 0.1 0 0.1 0 .1 0 0.1 0 0 0 0 0 0.2 0 .1 0 .1 0.1 0 .1

44 0.1 0 0 0 0 0.1 0 0.1 0 0 0.1 0 0.1 0 .1 0 0 0.2 0 0.2

45 0 0 0 0 0 0 0 0 0 0.1 0 0 0.2 0 .1 0 .1 0 .1 0 .2 0.1 0 .1

46 0.1 0 0 0 0 0 0 0.1 0 0.1 0 0.1 0 0.1 0 0 0.1 0.2 0 .2

47 0 0 0 0 0 0 0 0.1 0 0 0 0 0.2 0 .1 0 0.1 0 .1 0.1 0 .3

48 0 0 0 0 0 0 0.1 0.1 0 0 0.1 0 .1 0 0 0 0 0.3 0 0.3

49 0 0 0 0 0 0 0 0.1 0 .1 0 0 0.1 0.1 0 .1 0 0.1 0 0 0.4

50 0 0 0 0 0 0.1 0 0 0 0.1 0 .1 0 .1 0 0.1 0 0.2 0 0.2 0 .1

51 0 0 0 0 0 0 0 0.1 0 0 0 0.1 0.1 0 0.1 0 .2 0 0.2 0 .2

52 0 0 0 0 0 0 0 0 0 0 0.2 0 .1 0.1 0 0.1 0 .2 0 0.2 0 .1  

Table 5.   TOI transition matrix (non-zero columns only). (Sheet 1 of 3). 
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From\To 45 57 58 70 71 76 77 78 88 89 90 100 101 102 103 104 112 113 114

53 0 0 0 0 0.1 0 0 0.1 0.1 0.1 0 0.1 0 0.1 0 0 0 0.3 0.1

54 0 0.1 0 0 0 0 0 0.1 0 0 0 0 0 0.1 0.1 0.1 0.1 0 0.4

55 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0 0 0 0 0 0.1 0 0.5

56 0 0 0 0 0.1 0 0 0 0.1 0 0 0.1 0 0.1 0.2 0.1 0 0 0.3

57 0 0 0 0 0 0 0 0 0 0.1 0.1 0 0.1 0 0 0 0 0.2 0.5

58 0 0 0 0 0.1 0 0.1 0 0 0.1 0.1 0 0 0.1 0.1 0.1 0.1 0 0.2

59 0 0 0 0 0 0 0 0 0.1 0 0 0.1 0 0 0 0.3 0.2 0.1 0.2

60 0 0 0 0.1 0 0 0 0.1 0 0 0.1 0.1 0 0.1 0.1 0.1 0.1 0 0.2

61 0 0 0 0 0 0.1 0 0.1 0 0.1 0.1 0 0 0.1 0 0 0.2 0 0.3

62 0 0.1 0 0 0 0 0.1 0 0 0.1 0 0.1 0 0 0.1 0 0.3 0 0.2

63 0 0 0 0 0 0.1 0.1 0 0 0.1 0 0 0.1 0 0.2 0 0.1 0 0.3

64 0 0 0.1 0.1 0 0 0 0 0.1 0 0 0.1 0.1 0.1 0 0 0 0 0.4

65 0 0 0 0.1 0 0.1 0.1 0 0.1 0 0 0 0.1 0.1 0.1 0.1 0 0 0.2

66 0 0 0 0.1 0 0 0.1 0 0.1 0 0.1 0 0 0.1 0 0.1 0.2 0 0.2

67 0 0 0.1 0 0 0 0 0 0.1 0.1 0 0 0.1 0.1 0 0.1 0 0.1 0.3

68 0 0 0 0 0.1 0 0.1 0 0.1 0 0.1 0.1 0 0.1 0.1 0 0.1 0 0.2

69 0 0 0 0 0.1 0 0 0 0 0.1 0 0.1 0 0 0.1 0.1 0 0.4 0.1

70 0 0 0 0 0.1 0 0 0 0 0.1 0.1 0 0.1 0.1 0.1 0 0 0.2 0.2

71 0 0 0 0.1 0 0 0.1 0 0 0 0 0.1 0 0 0 0.2 0.1 0.2 0.2

72 0 0 0 0 0.1 0 0 0 0 0.1 0 0.1 0 0.1 0.1 0.2 0 0.1 0.2

73 0 0 0 0.1 0 0.1 0 0.1 0 0 0 0 0 0 0.2 0.2 0.1 0.1 0.1

74 0 0 0 0 0.1 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0 0.2 0.1

75 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0 0.1 0 0.1 0 0 0.2 0.2

76 0 0 0 0 0 0 0 0.1 0 0 0 0.1 0.1 0 0 0.3 0.2 0.1 0.1

77 0 0 0 0 0 0 0.1 0 0 0 0 0 0.2 0.1 0 0 0.1 0.3 0.2

78 0 0 0 0 0.1 0 0 0 0 0.1 0 0.1 0.1 0 0.2 0 0 0 0.4

79 0 0 0 0 0.1 0 0.1 0 0.1 0 0 0.1 0 0.1 0.1 0 0 0.2 0.2

80 0 0 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0 0.2 0.1 0.1

81 0 0 0 0 0 0 0 0.1 0.1 0 0.1 0 0 0 0.1 0.1 0 0.1 0.4

82 0 0 0 0.1 0 0 0 0.1 0 0.1 0 0.1 0 0.1 0.1 0 0 0.2 0.2

83 0 0 0 0 0 0 0.1 0.1 0 0 0 0 0.1 0.2 0.1 0.1 0 0 0.3

84 0 0.1 0 0 0 0.1 0 0 0.1 0 0 0 0.1 0 0.1 0 0.1 0.2 0.2

85 0 0 0 0.1 0.1 0 0.1 0 0 0 0.1 0 0 0.1 0 0.2 0 0 0.3

86 0 0 0 0 0 0.1 0 0.1 0.1 0 0 0.1 0 0.1 0 0 0 0.1 0.4

87 0 0 0 0 0 0 0 0.1 0 0 0 0.1 0.1 0.2 0.1 0 0.2 0 0.2

88 0 0 0.1 0 0 0 0.1 0 0 0 0.1 0 0 0 0 0.2 0.1 0.1 0.3

89 0 0 0 0 0 0 0 0.1 0 0 0.1 0 0.1 0.1 0.2 0.1 0.1 0.1 0.1

90 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0 0.3 0.2 0 0.2

91 0 0 0 0 0 0 0 0.1 0 0 0.1 0 0.1 0 0 0.1 0.3 0 0.3

92 0 0 0.1 0 0 0.1 0 0 0.1 0 0 0 0 0.1 0.1 0 0 0.4 0.1

93 0 0 0 0 0 0.1 0 0 0 0.1 0 0 0 0.2 0.1 0.1 0.1 0.1 0.2

94 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0.1 0.1 0.4 0.1 0.2

95 0 0 0.1 0 0 0 0 0 0 0 0.1 0 0.1 0.1 0.2 0 0 0.1 0.3

96 0 0 0 0 0 0.1 0 0 0 0 0 0.1 0 0.2 0.2 0.1 0 0.2 0.1

97 0 0 0.1 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0 0 0.1 0.1 0 0.3

98 0 0 0 0 0 0 0.1 0 0.1 0 0.1 0.1 0.1 0 0.1 0 0.2 0.1 0.1

99 0 0 0 0.1 0.1 0 0 0.1 0 0 0 0 0.1 0 0.1 0.2 0 0 0.3

100 0 0 0 0 0 0.1 0 0 0 0 0.1 0.1 0.1 0 0.1 0 0.3 0 0.2

101 0 0 0 0 0.1 0 0.1 0 0 0 0.1 0 0.1 0 0 0 0.1 0.4 0.1

102 0 0 0 0 0 0.1 0 0 0.1 0.1 0 0 0 0 0.2 0.1 0.1 0.1 0.2

103 0 0 0 0 0 0 0 0 0.1 0 0 0 0.1 0.2 0.1 0.1 0 0 0.4

104 0 0 0 0.1 0 0 0.1 0.1 0 0 0.1 0 0 0 0.1 0.1 0.1 0.2 0.1  

Table 6.   TOI transition matrix (non-zero columns only). (Sheet 2 of 3). 
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From\To 45 57 58 70 71 76 77 78 88 89 90 100 101 102 103 104 112 113 114

105 0 0.1 0 0 0 0 0 0 0 0 0.1 0 0.1 0.2 0.1 0.1 0.1 0 0.2

106 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0 0.1 0 0 0.1 0.4

107 0 0 0 0 0.1 0 0 0 0 0.1 0.1 0.1 0.1 0 0.1 0.1 0.1 0.1 0.1

108 0 0 0 0 0 0 0 0.1 0 0.1 0 0.1 0 0.1 0.1 0 0.3 0 0.2

109 0 0 0 0 0 0 0 0 0.1 0.1 0 0.1 0.1 0 0 0.1 0.2 0 0.3

110 0 0.1 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0 0 0.2 0 0.3

111 0 0 0 0 0 0 0.1 0.1 0 0 0.1 0.1 0 0.1 0.1 0 0 0.3 0.1

112 0 0 0 0 0.1 0 0.1 0.1 0 0 0 0.1 0 0.1 0 0.1 0.1 0.1 0.2

113 0 0 0 0.1 0 0 0 0.1 0 0.1 0 0.1 0.1 0 0.1 0 0.1 0.2 0.1

114 0 0 0.1 0 0 0.1 0 0.1 0 0.1 0 0 0 0.1 0.1 0.1 0.1 0 0.2

115 0.1 0 0 0 0.1 0 0 0 0 0 0 0 0.2 0 0.1 0.2 0.1 0 0.2

116 0 0 0 0 0.1 0.1 0 0.1 0.1 0.1 0 0 0 0 0 0 0 0.1 0.4

117 0 0 0 0 0.1 0.1 0 0 0.1 0 0 0 0.1 0 0.1 0.1 0.1 0.2 0.1

118 0 0 0 0 0 0.1 0 0.1 0.1 0 0.1 0 0 0.1 0.1 0.1 0 0.1 0.2

119 0 0 0 0 0 0 0.1 0 0 0.1 0.1 0 0 0.1 0 0.2 0.1 0 0.3

120 0 0 0 0 0 0 0.1 0 0 0.1 0 0 0 0.2 0 0.1 0 0 0.5

121 0 0.1 0 0 0 0 0 0 0 0.1 0 0.1 0.1 0 0.1 0 0.2 0.2 0.1

122 0 0 0 0.1 0 0.1 0 0 0.1 0.1 0.1 0 0.1 0 0 0.1 0 0 0.3

123 0 0 0 0.1 0 0 0 0 0 0 0.1 0 0.1 0 0.1 0.1 0 0.3 0.2

124 0 0 0 0 0.1 0 0 0 0.1 0 0.1 0.1 0.1 0 0 0 0 0 0.5

125 0 0 0 0 0 0 0 0.1 0 0.1 0.1 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1

126 0 0 0.1 0 0.1 0.1 0 0 0 0 0.1 0 0.1 0 0 0 0.1 0.3 0.1

127 0 0 0 0 0 0.1 0.1 0 0.1 0 0.1 0 0 0.1 0 0 0 0.1 0.4

128 0 0 0.1 0 0 0 0.1 0 0.1 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1

129 0 0 0 0 0.1 0.1 0.1 0 0 0 0.1 0 0.1 0.1 0 0 0.1 0.2 0.1

130 0 0.1 0 0 0 0.1 0 0 0.1 0 0 0 0.1 0 0.2 0 0.1 0.1 0.2

131 0 0 0 0 0.1 0 0 0.1 0 0.1 0 0.1 0.1 0.1 0.1 0.1 0 0.1 0.1

132 0 0 0 0 0 0.1 0.1 0.1 0 0 0 0 0 0.2 0 0.1 0.1 0 0.3

133 0 0 0 0 0 0.1 0 0 0 0 0.1 0 0 0.1 0.1 0 0.3 0.1 0.2

134 0 0 0 0 0 0 0 0.1 0 0 0 0 0.1 0 0 0.2 0.2 0.3 0.1

135 0 0.1 0 0.1 0 0 0 0 0 0.1 0.1 0 0 0.1 0 0 0.1 0.2 0.2

136 0 0 0 0 0 0 0.1 0 0.1 0 0 0.1 0.1 0 0 0.2 0.2 0.1 0.1

137 0 0 0 0 0 0.1 0 0 0.1 0 0.1 0.1 0 0 0 0.2 0.1 0.2 0.1

138 0 0 0 0.1 0 0 0 0 0 0 0.1 0.1 0 0.2 0.1 0 0.1 0 0.3

139 0 0 0.1 0 0 0.1 0 0.1 0 0.1 0 0 0 0.1 0.1 0.1 0 0.2 0.1

140 0 0 0.1 0 0 0 0 0 0.1 0.1 0 0 0 0.1 0.2 0.1 0 0.2 0.1

141 0 0.1 0 0 0 0.1 0 0 0.1 0 0 0 0.1 0 0 0.2 0.2 0 0.2

142 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0 0 0.1 0.1 0 0.3 0.1

143 0 0 0 0 0 0 0 0.1 0 0.1 0 0.1 0 0.2 0.1 0 0.1 0 0.3

144 0 0.1 0 0 0.1 0 0 0 0 0 0 0 0.1 0 0.1 0 0.2 0.1 0.3

145 0 0 0 0 0 0.1 0.1 0 0 0.1 0 0.1 0.1 0.1 0 0 0 0.2 0.2

146 0 0 0.1 0 0 0 0 0 0 0 0 0.1 0.1 0 0.2 0.1 0 0 0.4

147 0 0 0 0 0.1 0 0 0.1 0 0 0 0 0.1 0.1 0 0 0.3 0.2 0.1

148 0 0 0 0 0 0 0.1 0 0.1 0.1 0 0 0.1 0.1 0 0 0.2 0 0.3

149 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0 0.2 0 0.2 0.1 0.1 0.1

150 0 0 0.1 0 0 0 0 0.1 0 0 0.1 0 0 0 0 0.1 0.1 0.1 0.4

151 0 0.1 0 0 0 0 0 0.1 0 0.1 0 0 0 0.1 0 0 0 0.4 0.2

152 0 0 0 0.1 0 0.1 0 0 0 0 0.1 0 0.1 0 0.1 0.1 0 0.2 0.2

153 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0.1 0.1 0.3 0 0.2 0.2

154 0 0 0 0 0 0 0 0 0 0.1 0 0.1 0.1 0.1 0.1 0.1 0.2 0 0.2

155 0 0 0 0.1 0 0 0 0.1 0 0 0.1 0.1 0 0 0 0.2 0.2 0.1 0.1

156 0 0 0 0.1 0 0 0 0 0.1 0 0.1 0 0 0 0.2 0 0.1 0 0.4  

Table 7.   TOI transition matrix (non-zero columns only). (Sheet 3 of 3). 
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